Satellite images applied to property data

The Sentinels are a fleet of satellites designed specifically to deliver the wealth of data and imagery that are central to the European Commission’s Copernicus programme . This unique environmental monitoring programme is making a step change in the way we manage our environment, understand and tackle the effects of climate change and safeguard everyday lives. Sentinel-2 carries an innovative wide swath high-resolution multispectral imager with 13 spectral bands for a new perspective of our land and vegetation. The combination of high resolution, novel spectral capabilities, a swath width of 290 km and frequent revisit times is generating unprecedented views of Earth. Sentinel-2 is providing information for agricultural and forestry practices and for helping manage food security. Satellite images will be used to determine various crop and plant indexes. Some examples of these parameters could be:

  • Normalised Difference Vegetation Index (NDVI)
  • Normalised Difference Snow and Ice Index (NDSI)
  • Enhanced vegetation index (EVI)

This is particularly important for effective crops production prediction and applications related to Earth’s vegetation.

SentinelExampleSentinel use example

Sentinel-2 is the first optical Earth observation mission of its kind to include three bands in the ‘red edge’, which provide key information on the state of vegetation. In the previous image from 6 July 2015 acquired near Toulouse, France, the satellite’s multispectral instrument was able to discriminate between two types of crops: sunflower (in orange) and maize (in yellow).
These new and advanced datasets will be used inside CAPAS Business case to improve and enrich the information already obtained using LIDAR datasets (What is LIDAR?). Indeed, using LIDAR is possible to obtain accurate surface maps. However, data updates frequency is not very high. On the other hand, Sentinel constellation has a very high revisit frequency (five days) and offers information about kind of crops and their evolution. In conclusion, the use and merging of those different datasets answer several question regarding CAP parameters:

  • Is a specific parcel cultivated?
  • What kind of crop is growing in a plot?
  • Has the number of trees of a copse changed? When?
  • What is the ratio between Ecological Surfaces Areas (EFAs) and Productive areas in a given place?

Processing this kind of information could be very complex and laborious. It depends on selected indexes, chosen bands and geographical area. Furthermore, the processing is complicated by the high volumes of data. However, final results will offer a very detailed and accurate overview about land cover changes, environmental monitoring, crop monitoring, food security and detailed vegetation & forest monitoring parameters as leaf area index, chlorophyll concentration or carbon mass estimations. All this information and results have direct relation with Common Agricultural Policy principles and new European “Greening” policies.

Note: Some details about the characteristics and features of these instruments are available here.