GraphDB Cloud: an on-demand enterprise ready RDF database

We, from Ontotext, are excited to announce GraphDB Cloud – the easy way to introduce you to a semantic database like our signature GraphDB product. The automated tasks in GraphDB Cloud save the organizations the time and effort to install and manage hardware and software as well as the cost to buy it. Compared to a do-it-yourself database, DBaaS offers developers the opportunity to cut down the time it took them to work with their databases and spend their valuable time on creating and innovating instead of administrating.

GraphDB Cloud is one part of the Cognitive Cloud solutions for low-cost and on-demand smart data management.

The users are with the following profile:

  • Small cognitive-technology oriented team in a big organization that needs low upfront and ongoing costs for a database.
  • Start-up companies without a database infrastructure, which requires a reliable technology that scales up along with their business.
  • Corporate solution architects working to solve the challenges their enterprise faces when handling huge amounts of data and information

As a next step, we want to invite you to watch our webinar “GraphDB Cloud – Enterprise Ready RDF Database on Demand” where we introduce you to the DraphDB Cloud console and advise you how you could create custom solutions to address your company’s specific data and information needs.

Understanding territorial distribution of Properties of Managers and Shareholders: a Data-driven Approach

Thanks to the collaboration between Cerved, SINTEF and “Territorio Italia” it was possible to publish a paper which presents a new score developed by Cerved.”Territorio Italia” is an open access peer-reviewed scientific magazine focused on territorial and geographic topics; it is edited by Agenzia dell’Entrate, which is the Italian Revenue authority.

The paper has been announced in the previous blog post. In this post we highlight the main results, the Manager and Shareholders Concentration score and its application to the cities of Turin, Milan and Rome.

Manager and Shareholders Concentration (MSHC) score

The paper introduces the “Manager and Shareholders Concentration (MSHC) score” – an index created with the aim of identifying the wealthiest areas within a certain municipality. This is of
particular interest for the real estate market, especially when there are several wealthy areas within
the same city. The paper thus introduces the index and demonstrate how it can correctly identify
the areas with high real estate values within a city, even when they are located far from the city centre.
The approach proposed in the paper aims to directly observe the distribution of the properties of the wealthiest citizens, who usually choose to move to and live in the most prestigious areas. While this phenomenon can be observed in many cities around the world, in Italy it is particularly evident in the city of Turin: although they are endowed with fascinating city centres, many of the buildings of greatest importance are located on the hills far from the centre. The crucial question becomes to correctly determine which sample of citizens to select and qualify as managers or, more generally, wealthy people. To do this, we used Cerved’s proprietary database – a database containing public data on all Italian companies – to extract information about individuals recognized as shareholders and/or managers. In the context of this work, a shareholder is considered anyone who owns shares above the threshold percentage of 25% of the company’s share capital, while a manager is defined as anyone who holds a key position within a company, accomplishes management duties, and is legally liable for the company’s debts. In calculating the MSHC score, the basic idea is to observe the total number of properties of managers and shareholders per geographic area, comparing this information with the total number of residents in the same geographic area. This approach provides a result that can be immediately visualized graphically using thematic maps; for example, by plotting the score on a map of the city of Turin, it may be noted that the two most relevant areas are, respectively, the centre and the hill on the eastern side of the city.

HEATMAP

The territorial distribution of the MSHC score can be easily observed through a heat map. On the maps, darker colours correspond to high scores, while lighter colours are associated with lower scores. Heat maps also allow the territorial distribution of real estate values to be easily compared, in order to verify whether there is a correlation between prices and scores. For the city of Turin, it was possible to analyse the correlation between the MSHC score and the asking prices for real estate provided by Osservatorio Immobiliare della Città di Torino – OICT (Turin Real Estate Market Observatory), in comparison with their territorial distribution. For the cities of Rome and Milan, the comparison between the MSHC score and real estate values was made using the values published by Osservatorio del Mercato Immobiliare (OMI) of Agenzia dell’Entrate, an important reference for the real estate market on the national level.

TURIN

The score shows high values in the city centre, the hill, and the micro-areas on the western side of the city, while it correctly identifies the south and north areas of the city as less prestigious. This result confirms that the score can also be considered a valuable tool for predicting values on the real estate market.

Figure 1 Territorial distribution of the MSHC score in the city of Turin. The MSHC score is displayed on the map, associating a darker colour with higher scores and brighter colours with lower

ROME

The second city chosen to analyse the MSHC score is Rome, a very complex city due to the vastness of the municipal area that is not comparable to any Italian metropolis, as well as due to the particular shape of some specific areas, namely the proximity to the city-state of the Vatican, the large number of historical and cultural points of interest, and access to the sea.

The size of the Italian capital does not allow the distribution to be observed in detail, but it may be noted that there are more high-value areas, which correspond to actual high-value neighbourhoods and others, which can be defined as emerging neighbourhoods due to the presence of undergrounds and public transit.

Figure 2 Territorial distribution of the MSHC score in the city of Rome. The MSHC score is visualised on the map by associating a darker colour with higher scores, and brighter colours with lower scores

MILANO

The third city used to analyse the MSHC score was Milano – a city that has experienced major changes in recent years. Milan has seen the development of new neighbourhoods and skyscrapers, a universal exposition (EXPO), and a new underground line (with another under development) after years of inactivity. The highest MSHC score is found in the centre of the city, while in the suburbs not many neighbourhoods are identified as particularly wealthy.

Figure 3 Territorial distribution of the MSHC score in the city of Milan. The MSHC score is visualised on the map by associating a darker colour with higher scores, and brighter colours with lower scores

CONCLUSION

The MSHC score illustrated in the paper provides an interesting index that may be used to better comprehend where the richest segments of the population live, and consequently to identify the areas of the city with the highest real estate values. Obviously, although considering this score alone is not enough to support the valuation of real estate property values, together with other indicators under development at Cerved (for real estate valuation) it represents an excellent starting point. For a more in-depth analysis and to observe how much the score is correlated with housing price please have a look at the entire paper and the complete results [1].

References

[1] Stefano Pozzati, Diego Sanvito, Claudio Castelli, Dumitru Roman. Understanding territorial distribution of Properties of Managers and Shareholders: a Data-driven Approach. Territorio Italia 2 (2016), DOI: 10.14609/Ti_2_16_2e

URL to access the article in Italian.

URL to access the article in English.

 

The proDataMarket Ontology: Enabling Semantic Interoperability of Real Property Data

Real property data (often referred to as real estate, realty, or immovable property data) represent a valuable asset that has the potential to enable innovative services when integrated with related contextual data (e.g., business data). Such services can range from providing evaluation of real estate to reporting on up-to-date information about state-owned properties. Real property data integration is a difficult task primarily due to the heterogeneity and complexity of the real property data, and the lack of generally agreed upon semantic descriptions of the concepts in this domain. The proDataMarket ontology is developed in the project as a key enabler for integration of real property data.

The proDataMarket ontology design and development process followed techniques and design choices supported by existing methodologies, mainly the one proposed by Noy [1]. Requirements are extracted from a set of relevant business cases and competency questions [2] are defined for each business case, so as core concepts and relationships. A conceptual model is then developed based on the requirements mentioned above and international standards including ISO 19152:2012 and European Union’s INSPIRE data specifications. For example, the LADM conceptual model from ISO 19152:2012 is used as reference model to the proDataMarket cadastral domain conceptual model. Afterwards we implemented the conceptual model using RDFS/OWL linked data standard. RDFS is used to model concepts, properties and simple relationships such as rdfs:subClassOf. OWL is built upon RDFS and provides a richer language for web ontology modelling and it is used to model constraints and other advanced relationships, such as the cardinality constraint needed to express the relationship between properties and buildings.

The proDataMarket ontology can be accessed at http://vocabs.datagraft.net/proDataMarket/. The ontology has been divided into several sub-ontologies (see Table below), reflecting the cross-domain nature of the requirements. This modular approach also helped to handle the complexity of the model and made it easier to maintain. In the current version, there are 11 sub-ontologies with 43 native classes and 43 native properties.

Table: Composition of the proDataMarket ontology

Domain/module Namespace prefix URL Classes Properties Business cases
Common prodm-com http://vocabs.datagraft.net/proDataMarket/0.1/Common# 4 4 ALL
Cadaster prodm-cad http://vocabs.datagraft.net/proDataMarket/0.1/Cadastre# 6 16 SoE, RVAS, NNAS, SIM
State of Estate Report prodm-soe http://vocabs.datagraft.net/proDataMarket/0.1/SoE# 4 2 SoE, RVAS
Business Entity Reuse the existing vocabularies, no new classes and properties 0 0 SoE, RVAS
Building Accessibility Reuse the existing vocabularies, no new classes and properties 0 0 SoE
Natural Hazard prodm-nh http://vocabs.datagraft.net/proDataMarket/0.1/NaturalHazard# 1 0 RVAS
Land Parcel Identification System (LPIS) prodm-lpis http://vocabs.datagraft.net/proDataMarket/0.1/LPIS# 1 7 CAPAS
Protected Sites prodm-ps http://vocabs.datagraft.net/proDataMarket/0.1/ProtectedSite# 2 0 CAPAS
Sentinel data prodm-sen http://vocabs.datagraft.net/proDataMarket/0.1/Sentinel# 1 1 CAPAS
Landscape Elements (LiDAR data) prodm-lid http://vocabs.datagraft.net/proDataMarket/0.1/Lidar# 3 0 CAPAS
Assessment prodm-asm http://vocabs.datagraft.net/proDataMarket/0.1/Assessment# 3 3 CAPAS
CensusTract prodm-ct http://vocabs.datagraft.net/proDataMarket/0.1/CensusTract# 1 0 CST,CCRS
Urban Infrastructure prodm-ui http://vocabs.datagraft.net/proDataMarket/0.1/UrbanInfrastructure# 17 10 SIM
Total: 43 43

More than 30 datasets have been published through the DataGraft platform [3] [4] using the proDataMarket ontology as a central reference model. All seven business cases use the proDataMarket ontology in data publishing. More details on the proDataMarket vocabulary can be found in the paper under review: http://www.semantic-web-journal.net/content/prodatamarket-ontology-enabling-semantic-interoperability-real-property-data

References

  • [1] Noy, Natalya F., and Deborah L. McGuinness. “Ontology development 101: A guide to creating your first ontology.” (2001).
  • [2] Grüninger, Michael, and Mark S. Fox. “Methodology for the Design and Evaluation of Ontologies.” (1995).
  • [3] Roman, D., et al. DataGraft: One-Stop-Shop for Open Data Management. 2017. Semantic Web, vol. Preprint, no. Preprint, pp. 1-19, 2017. DOI: 10.3233/SW-170263.
  • [4] Roman, D., et al. DataGraft: Simplifying Open Data Publishing. ESWC (Satellite Events) 2016: 101-106.

Integrating multisectoral datasets: from satellites to real estate scoring model

During a project meeting in Sofia on September 21, 2016, Cerved teamed up with TRAGSA to brainstorm ideas of re-using the TRAGSA methods for processing satellite imagery to analyse green areas in urbanized cities.

Fundamentals of Tragsa Processing

A common feature in Vegetation Spectra is the high contrast observed between the red band and the Near Infrared (NIR) region. The optical instrument carried by Sentinel 2 satellites samples 13 spectral bands, including high resolution bands in the red (bands 4, 5 & 6) as well as bands in the NIR (8 & 8A). Refer to this blog post for more details about processing Sentinel 2 data.

Using the TRAGSA methodology it is possible to isolate and enhance the vegetation, to locate green areas in urban areas. Green areas are important input to the Cerved’s innovative real estate evaluation model (which is being developed within one of the Cerved’s business cases in the project, as introduced in this blog post). Cerved uses open data, to generate indicators of green areas defined for the model: green area coverage and distance to the wood. Operations that Cerved performs to compute these indicators are similar to those that TRAGSA does on satellite data, such as clustering of green areas into big areas and isolating trees and group of trees. This motivated us to experiment with satellite data and TRAGSA’s methodology, to see whether we could potentially use more complete, structured and up-to-date source of green areas information as input to our real estate evaluation model.

Experiment

We identified a highly urbanized Italian city but with particular attention to green areas, which is the city of Turin.

The steps that we followed:

  • extraction of city boundaries of Turin in GeoJSON format by SPAZIODATI
  • selections of good quality imagery for Turin from the Sentinel data repository by TRAGSA
  • processing S2 imagery in order to get a vector layer which indicates the presence or absence of a green area in each pixel (1/0) by TRAGSA
  • display of the green areas of the tiles (see the screenshot below) prototype Amerigo visualisation service, under development by SPAZIODATI
  • data processing and aggregation of the tiles into census cells areas, in order to develop green areas indicators for each census cell, by CERVED
  • integration and testing of the score dedicated to green areas within the business model CCRS (Cerved Cadastral Report Service) by CERVED

image001

The result of this experiment was extremely surprising; the detail and accuracy of this new score in identifying the green areas (not only public green areas) is far greater than accuracy of the other scores, developed on public and open green areas of datasets.

ProDataMarket place as a toll for connecting real-estate data publishers and prospect data consumers

The main objective of the ProDataMarket project is to create a data marketplace for open and proprietary real-estate and related contextual data.

Marketplace is a place where data producers meet prospect data consumers. In addition to basic features for making data accessible and discoverable, marketplace can provide more tools to help data producers “advertise” their data and better engage with potential data consumers. Among such tools are those that help data producers explain the type of their data, its attributes and demonstrate its value. In this post we discuss how these tools are being realised in the ProDataMarket place.

Driving example

Let’s consider a national statistical office, for example, the Italian National Institute of Statistics (ISTAT). ISTAT wants to disseminate one of its datasets, a dataset with census cells that cover the Italian region of Piemonte. This dataset subdivides the region of Piemonte in census sections according to ISTAT’s 2011 National Census. A census section is the smallest geographic unit for which the statistical variables of a population census are taken.

ISTAT is interested in explaining to the prospect data consumers that the data can be useful when it is needed to:

  • determine inter-municipal boundaries
  • describe different areas of a city in terms of some geographically-bound characteristics

Marketplace: initial steps

Figure 1 illustrates initial steps that ISTAT performs at the marketplace to present her data.

Figure 1: The data producer prepares, describes and publishes her data at the marketplace, to make accessible and discoverable.

 

ISTAT prepares its data for publication, describes and catalogues it. Now, a prospect data consumer can discover and explore the dataset of census cells of the Piemonte region. While ISTAT made the data accessible and discoverable, data consumers still have to figure our themselves what type of data it is, what is inside and what is it useful for.

Marketplace: explaining the data types

To explain the type of the data, ISTAT creates and attaches visualisations to its data, as shown in Fig. 2.

Figure 2: The data producer creates visualisations, to explain the type of the data

 

In addition to preparing, describing and publishing Piemonte census sections dataset, ISTAT can create a map of all the census cells of the Piemonte region. This gives an illustrative example of the data to the prospect data consumers: when exploring the dataset, the data consumer can immediately see that the data contains polygons, each of which represents a geographic area of a census section.

Now that the type of the data is clearer, ISTAT can go further and explain various attributes of the data.

Marketplace: explaining attributes of the data 

Figure 3 illustrates steps that ISTAT performs at the marketplace, to give the data consumers a glimpse of the data attributes.

Figure 3: The data producer queries the data, to explain data attributes.

 

As mentioned above, the dataset of the driving example contains census cells’ geometries. Every cell is attach to a certain municipality. This information becomes useful if one wants to represent single municipalities on a map. For example, to represent the city of Turin, ISTAT can prepare a subset of the census cells by filtering on the municipality attribute of each cell. Similarly, other attributes of the data can be highlighted.

Marketplace: putting data into context to explain its value

With the help of the marketplace, ISTAT can prepare, describe and visualise as many subsets of the data, as she wants to. Finally, to showcase the value of the data and explain to the data consumer its value, ISTAT can put census cells into context, as illustrated in Fig. 4.

Figure 4: The data producer augments its data from other data sources, to show the “value in context”.

 

This last approach is realised through the Augmentation Service that supports querying a co-located data source using several functions to produce a new dataset. Currently, the Augmentation Service uses data from OpenStreetMap, to provide context. For example, ISTAT can use the service to extract the number of bus stops found nearby each census cell, or the distance to the closest train station, or the length of pedestrian paths in each census cell. Once the new augmented dataset is prepared, ISTAT can proceed with visualisations. For example, she can create a coloured map to show density of nearby bus stops in Turin.