New paper: Tabular Data Anomaly Patterns

Sukhobok, N. Nikolov, and D. Roman. Tabular Data Anomaly Patterns. To appear in the proceedings of The 3rd International Conference on Big Data Innovations and Applications (Innovate-Data 2017), 21-23 August 2017, Prague, Czech Republic, IEEE.

  • Abstract: One essential and challenging task in data science is data cleaning — the process of identifying and eliminating data anomalies. Different data types, data domains, data acquisition methods, and final purposes of data cleaning have resulted in different approaches in defining data anomalies in the literature. This paper proposes and describes a set of basic data anomalies in the form of anomaly patterns commonly encountered in tabular data, independently of the data domain, data acquisition technique, or the purpose of data cleaning. This set of anomalies can serve as a valuable basis for developing and enhancing software products that provide general-purpose data cleaning facilities and can provide a basis for comparing different tools aimed to support tabular data cleaning capabilities. Furthermore, this paper introduces a set of corresponding data operations suitable for addressing the identified anomaly patterns and introduces Grafterizer — a software framework that implements those data operations.
  • Download paper

GraphDB Cloud: an on-demand enterprise ready RDF database

We, from Ontotext, are excited to announce GraphDB Cloud – the easy way to introduce you to a semantic database like our signature GraphDB product. The automated tasks in GraphDB Cloud save the organizations the time and effort to install and manage hardware and software as well as the cost to buy it. Compared to a do-it-yourself database, DBaaS offers developers the opportunity to cut down the time it took them to work with their databases and spend their valuable time on creating and innovating instead of administrating.

GraphDB Cloud is one part of the Cognitive Cloud solutions for low-cost and on-demand smart data management.

The users are with the following profile:

  • Small cognitive-technology oriented team in a big organization that needs low upfront and ongoing costs for a database.
  • Start-up companies without a database infrastructure, which requires a reliable technology that scales up along with their business.
  • Corporate solution architects working to solve the challenges their enterprise faces when handling huge amounts of data and information

As a next step, we want to invite you to watch our webinar “GraphDB Cloud – Enterprise Ready RDF Database on Demand” where we introduce you to the DraphDB Cloud console and advise you how you could create custom solutions to address your company’s specific data and information needs.

Understanding territorial distribution of Properties of Managers and Shareholders: a Data-driven Approach

Thanks to the collaboration between Cerved, SINTEF and “Territorio Italia” it was possible to publish a paper which presents a new score developed by Cerved.”Territorio Italia” is an open access peer-reviewed scientific magazine focused on territorial and geographic topics; it is edited by Agenzia dell’Entrate, which is the Italian Revenue authority.

The paper has been announced in the previous blog post. In this post we highlight the main results, the Manager and Shareholders Concentration score and its application to the cities of Turin, Milan and Rome.

Manager and Shareholders Concentration (MSHC) score

The paper introduces the “Manager and Shareholders Concentration (MSHC) score” – an index created with the aim of identifying the wealthiest areas within a certain municipality. This is of
particular interest for the real estate market, especially when there are several wealthy areas within
the same city. The paper thus introduces the index and demonstrate how it can correctly identify
the areas with high real estate values within a city, even when they are located far from the city centre.
The approach proposed in the paper aims to directly observe the distribution of the properties of the wealthiest citizens, who usually choose to move to and live in the most prestigious areas. While this phenomenon can be observed in many cities around the world, in Italy it is particularly evident in the city of Turin: although they are endowed with fascinating city centres, many of the buildings of greatest importance are located on the hills far from the centre. The crucial question becomes to correctly determine which sample of citizens to select and qualify as managers or, more generally, wealthy people. To do this, we used Cerved’s proprietary database – a database containing public data on all Italian companies – to extract information about individuals recognized as shareholders and/or managers. In the context of this work, a shareholder is considered anyone who owns shares above the threshold percentage of 25% of the company’s share capital, while a manager is defined as anyone who holds a key position within a company, accomplishes management duties, and is legally liable for the company’s debts. In calculating the MSHC score, the basic idea is to observe the total number of properties of managers and shareholders per geographic area, comparing this information with the total number of residents in the same geographic area. This approach provides a result that can be immediately visualized graphically using thematic maps; for example, by plotting the score on a map of the city of Turin, it may be noted that the two most relevant areas are, respectively, the centre and the hill on the eastern side of the city.

HEATMAP

The territorial distribution of the MSHC score can be easily observed through a heat map. On the maps, darker colours correspond to high scores, while lighter colours are associated with lower scores. Heat maps also allow the territorial distribution of real estate values to be easily compared, in order to verify whether there is a correlation between prices and scores. For the city of Turin, it was possible to analyse the correlation between the MSHC score and the asking prices for real estate provided by Osservatorio Immobiliare della Città di Torino – OICT (Turin Real Estate Market Observatory), in comparison with their territorial distribution. For the cities of Rome and Milan, the comparison between the MSHC score and real estate values was made using the values published by Osservatorio del Mercato Immobiliare (OMI) of Agenzia dell’Entrate, an important reference for the real estate market on the national level.

TURIN

The score shows high values in the city centre, the hill, and the micro-areas on the western side of the city, while it correctly identifies the south and north areas of the city as less prestigious. This result confirms that the score can also be considered a valuable tool for predicting values on the real estate market.

Figure 1 Territorial distribution of the MSHC score in the city of Turin. The MSHC score is displayed on the map, associating a darker colour with higher scores and brighter colours with lower

ROME

The second city chosen to analyse the MSHC score is Rome, a very complex city due to the vastness of the municipal area that is not comparable to any Italian metropolis, as well as due to the particular shape of some specific areas, namely the proximity to the city-state of the Vatican, the large number of historical and cultural points of interest, and access to the sea.

The size of the Italian capital does not allow the distribution to be observed in detail, but it may be noted that there are more high-value areas, which correspond to actual high-value neighbourhoods and others, which can be defined as emerging neighbourhoods due to the presence of undergrounds and public transit.

Figure 2 Territorial distribution of the MSHC score in the city of Rome. The MSHC score is visualised on the map by associating a darker colour with higher scores, and brighter colours with lower scores

MILANO

The third city used to analyse the MSHC score was Milano – a city that has experienced major changes in recent years. Milan has seen the development of new neighbourhoods and skyscrapers, a universal exposition (EXPO), and a new underground line (with another under development) after years of inactivity. The highest MSHC score is found in the centre of the city, while in the suburbs not many neighbourhoods are identified as particularly wealthy.

Figure 3 Territorial distribution of the MSHC score in the city of Milan. The MSHC score is visualised on the map by associating a darker colour with higher scores, and brighter colours with lower scores

CONCLUSION

The MSHC score illustrated in the paper provides an interesting index that may be used to better comprehend where the richest segments of the population live, and consequently to identify the areas of the city with the highest real estate values. Obviously, although considering this score alone is not enough to support the valuation of real estate property values, together with other indicators under development at Cerved (for real estate valuation) it represents an excellent starting point. For a more in-depth analysis and to observe how much the score is correlated with housing price please have a look at the entire paper and the complete results [1].

References

[1] Stefano Pozzati, Diego Sanvito, Claudio Castelli, Dumitru Roman. Understanding territorial distribution of Properties of Managers and Shareholders: a Data-driven Approach. Territorio Italia 2 (2016), DOI: 10.14609/Ti_2_16_2e

URL to access the article in Italian.

URL to access the article in English.

 

New proDataMarket paper: Combining Sentinel-2 and LiDAR data for objective and automated identification of agricultural parcel features

Combining Sentinel-2 and LiDAR data for objective and automated identification of agricultural parcel features by Jesús Estrada, Héctor Sanchez, Lorena Hernanz, María José Checa and Dumitru Roman

This new proDataMarket paper explains how a comprehensive strategy combining remote sensing and field data can be helpful for more effective agriculture management. Satellite data are suitable for monitoring large areas over time, while LiDAR provides specific and accurate data on height and relief. Both types of data can be used for calibration and validation purposes, avoiding field visits and saving useful resources. In this paper we propose a process for objective and automated identification of agricultural parcel features based on processing and combining Sentinel2 data (to sense different types of irrigation patterns) and LiDAR data (to detect landscape elements). The proposed process was validated in several use cases in Spain, yielding high accuracy rates in the identification of parcel features. An important application example of the work reported in this paper is the European Union (EU) Common Agriculture Policy (CAP) funds assignment service, which would significantly benefit from a more objective and automated process for identification of agricultural parcel features, thereby enabling the possibility for the EU to save significant amounts of money yearly.

Although some issues regarding the generation and improvement of agricultural property datasets were already explained in our previous blog entry (Data workflow in CAPAS), this paper highlights the current results of generation and usage of this new information.

Irrigation patterns map, obtained using Sentinel-2 Process 

The main result of this analysis is how the use of the external, and usually underused, data sources offers a powerful and accurate tool for generating new contrast and validation data for the information used by Spanish CAP Payment Agency, in order to provide a better service to landowners and farmers. As a conclusion, the use of Sentinel-2 series and LiDAR can help to detect areas that are not eligible for grant assignment, support cross-check, and these datasets can be used as a tool for choosing field samples.

The document is available Here.

New Paper: Understanding territorial distribution of Properties of Managers and Shareholders: a Data-driven Approach

Understanding territorial distribution of Properties of Managers and Shareholders: a Data-driven Approach by S. Pozzati, D. Sanvito, C. Castelli, D. Roman, Territorio Italia 2 (2016), DOI: 10.14609/Ti_2_16_2e.

  • Abstract: The analysis and better understanding of the distribution of wealth of individuals in cities can be a precious tool, especially in support of the estimation of real estate values. These analyses can also be used to facilitate decision making in various sectors, such as public administration or the real estate market. In this paper, by making use of publicly available data and of data owned by Cerved, (a credit scoring company in Italy), we can observe the territorial distribution of the properties of managers and shareholders – categories of people usually linked to high economic well-being – and, based on that, we identify the areas of the cities where the value of real estate properties is presumably higher. More specifically, we introduce the Manager and Shareholder Concentration (MSHC) score and validate its accuracy and effectiveness in three Italian cities (Turin, Rome and Milan).
  • Download paper

The proDataMarket Ontology: Enabling Semantic Interoperability of Real Property Data

Real property data (often referred to as real estate, realty, or immovable property data) represent a valuable asset that has the potential to enable innovative services when integrated with related contextual data (e.g., business data). Such services can range from providing evaluation of real estate to reporting on up-to-date information about state-owned properties. Real property data integration is a difficult task primarily due to the heterogeneity and complexity of the real property data, and the lack of generally agreed upon semantic descriptions of the concepts in this domain. The proDataMarket ontology is developed in the project as a key enabler for integration of real property data.

The proDataMarket ontology design and development process followed techniques and design choices supported by existing methodologies, mainly the one proposed by Noy [1]. Requirements are extracted from a set of relevant business cases and competency questions [2] are defined for each business case, so as core concepts and relationships. A conceptual model is then developed based on the requirements mentioned above and international standards including ISO 19152:2012 and European Union’s INSPIRE data specifications. For example, the LADM conceptual model from ISO 19152:2012 is used as reference model to the proDataMarket cadastral domain conceptual model. Afterwards we implemented the conceptual model using RDFS/OWL linked data standard. RDFS is used to model concepts, properties and simple relationships such as rdfs:subClassOf. OWL is built upon RDFS and provides a richer language for web ontology modelling and it is used to model constraints and other advanced relationships, such as the cardinality constraint needed to express the relationship between properties and buildings.

The proDataMarket ontology can be accessed at http://vocabs.datagraft.net/proDataMarket/. The ontology has been divided into several sub-ontologies (see Table below), reflecting the cross-domain nature of the requirements. This modular approach also helped to handle the complexity of the model and made it easier to maintain. In the current version, there are 11 sub-ontologies with 43 native classes and 43 native properties.

Table: Composition of the proDataMarket ontology

Domain/module Namespace prefix URL Classes Properties Business cases
Common prodm-com http://vocabs.datagraft.net/proDataMarket/0.1/Common# 4 4 ALL
Cadaster prodm-cad http://vocabs.datagraft.net/proDataMarket/0.1/Cadastre# 6 16 SoE, RVAS, NNAS, SIM
State of Estate Report prodm-soe http://vocabs.datagraft.net/proDataMarket/0.1/SoE# 4 2 SoE, RVAS
Business Entity Reuse the existing vocabularies, no new classes and properties 0 0 SoE, RVAS
Building Accessibility Reuse the existing vocabularies, no new classes and properties 0 0 SoE
Natural Hazard prodm-nh http://vocabs.datagraft.net/proDataMarket/0.1/NaturalHazard# 1 0 RVAS
Land Parcel Identification System (LPIS) prodm-lpis http://vocabs.datagraft.net/proDataMarket/0.1/LPIS# 1 7 CAPAS
Protected Sites prodm-ps http://vocabs.datagraft.net/proDataMarket/0.1/ProtectedSite# 2 0 CAPAS
Sentinel data prodm-sen http://vocabs.datagraft.net/proDataMarket/0.1/Sentinel# 1 1 CAPAS
Landscape Elements (LiDAR data) prodm-lid http://vocabs.datagraft.net/proDataMarket/0.1/Lidar# 3 0 CAPAS
Assessment prodm-asm http://vocabs.datagraft.net/proDataMarket/0.1/Assessment# 3 3 CAPAS
CensusTract prodm-ct http://vocabs.datagraft.net/proDataMarket/0.1/CensusTract# 1 0 CST,CCRS
Urban Infrastructure prodm-ui http://vocabs.datagraft.net/proDataMarket/0.1/UrbanInfrastructure# 17 10 SIM
Total: 43 43

More than 30 datasets have been published through the DataGraft platform [3] [4] using the proDataMarket ontology as a central reference model. All seven business cases use the proDataMarket ontology in data publishing. More details on the proDataMarket vocabulary can be found in the paper under review: http://www.semantic-web-journal.net/content/prodatamarket-ontology-enabling-semantic-interoperability-real-property-data

References

  • [1] Noy, Natalya F., and Deborah L. McGuinness. “Ontology development 101: A guide to creating your first ontology.” (2001).
  • [2] Grüninger, Michael, and Mark S. Fox. “Methodology for the Design and Evaluation of Ontologies.” (1995).
  • [3] Roman, D., et al. DataGraft: One-Stop-Shop for Open Data Management. 2017. Semantic Web, vol. Preprint, no. Preprint, pp. 1-19, 2017. DOI: 10.3233/SW-170263.
  • [4] Roman, D., et al. DataGraft: Simplifying Open Data Publishing. ESWC (Satellite Events) 2016: 101-106.

New DataGraft-related papers

DataGraft: One-Stop-Shop for Open Data Management by D. Roman, N. Nikolov, A. Putlier, D. Sukhobok, B. Elvesæter, A. Berre, X. Ye, M. Dimitrov, A. Simov, M. Zarev, R. Moynihan, B. Roberts, I. Berlocher, S. Kim, T. Lee, A. Smith, and T. Heath. Semantic Web journal, 2016.

  • Abstract: This paper introduces DataGraft (https://datagraft.net/) – a cloud-based platform for data transformation and publishing. DataGraft was developed to provide better and easier to use tools for data workers and developers (e.g., open data publishers, linked data developers, data scientists) who consider existing approaches to data transformation, hosting, and access too costly and technically complex. DataGraft offers an integrated, flexible, and reliable cloud-based solution for hosted open data management. Key features include flexible management of data transformations (e.g., interactive creation, execution, sharing, and reuse) and reliable data hosting services. This paper provides an overview of DataGraft focusing on the rationale, key features and components, and evaluation.
  • Download paper

DataGraft: Simplifying Open Data Publishing by D. Roman, M. Dimitrov, N. Nikolov, A. Putlier, D. Sukhobok, B. Elvesæter, A..J. Berre, X. Ye, A. Simov and Y. Petkov. ESWC Demo paper. 2016.

  • Abstract: In this demonstrator we introduce DataGraft – a platform for Open Data management. DataGraft provides data transformation, publishing and hosting capabilities that aim to simplify the data publishing lifecycle for data workers (i.e., Open Data publishers, Linked Data developers, data scientists). This demonstrator highlights the key features of DataGraft by exemplifying a data transformation and publishing use case with property-related data.
  • Download paper

Tabular Data Cleaning and Linked Data Generation with Grafterizer by D. Sukhobok, N. Nikolov, A. Pultier, X. Ye, A..J. Berre, R. Moynihan, B. Roberts, B. Elvesæter, N. Mahasivam and D. Roman. ESWC Demo paper. 2016.

  • Abstract: Over the past several years the amount of published open data has increased significantly. The majority of this is tabular data, that requires powerful and flexible approaches for data cleaning and preparation in order to convert it into Linked Data. This paper introduces Grafterizer – a software framework developed to support data workers and data developers in the process of converting raw tabular data into linked data. Its main components include Grafter, a powerful software library and DSL for data cleaning and RDF-ization, and Grafterizer, a user interface for interactive specification of data transformations along with a back-end for management and execution of data transformations. The proposed demonstration will focus on Grafterizer’s powerful features for data cleaning and RDF-ization in a scenario using data about the risk of failure of transport infrastructure components due to natural hazards.
  • Download paper

 

New paper: Towards a Reference Architecture for Trusted Data Marketplaces

Towards a Reference Architecture for Trusted Data Marketplaces by Dumitru Roman and Stefano Gatti. 2nd International Conference on Open and Big Data, 2016.

  • Abstract: Data sharing presents extensive opportunities and challenges in domains such as the public sector, health care and financial services. This paper introduces the concept of “trusted data marketplaces” as a mechanism for enabling trusted sharing of data. It takes credit scoring—an essential mechanism of the entire world-economic environment, determining access for companies and individuals to credit and the terms under which credit is provisioned—as an example for the realization of the trusted data marketplaces concept. This paper looks at credit scoring from a data perspective, analyzing current shortcomings in the use and sharing of data for credit scoring, and outlining a conceptual framework in terms of a trusted data marketplace to overcome the identified shortcomings. The contribution of this paper is two-fold: (1) identify and discuss the core data issues that hinder innovation in credit scoring; (2) propose a conceptual architecture for trusted data marketplaces for credit scoring in order to serve as a reference architecture for the implementation of future credit scoring systems. The architecture is generic and can be adopted in other domains where data sharing is of high relevance.
  • Download paper

 

proDataMarket at the European Data Forum 2016

On 29 and 30 June proDataMarket participated in the European Data Forum (EDF) 2016, organized by Amsterdam Data Science and Technical University of Eindhoven under the auspices of the Dutch presidency of the European Union.

Evoluon

The conference, held in the Conference Center and former museum of Science and Technology Evoluon (Eindhoven, NE), was attended by Commissioner Günther Oettinger, the Rector of University of Tilburg and Philips, Siemens and TomTom CEOs. The event brought together more than 600 attendees from across Europe and multiple technology sectors.

General View

Likewise, proDataMarket presented a descriptive poster of the project, explaining its development and the conclusions reached so far in the different business cases and data-marketplace central infrastructure, and how proDataMarket aims to disrupt the PD market and demonstrate innovation across sectors where Property Data is relevant, by integrating technical framework for effective publishing, data consumption and showcasing data-driven business products.

poster

Besides the main event, the IQmulus project organized a workshop addressing Geospatial, Mathematical and Linked Big data. This event addressed aspects of big data where geolocation, geospatial or mathematical structures have a central role. In this side-event, the project coordinator, Dr. Dumitru Roman, also explained the whole project and its Business Cases.

Cerved and SpazioDati at Data Driven Innovation 2016

Cerved and SpazioDati participated in the first edition of Data Driven Innovation 2016 with a presentation and a stand about preliminary results of their collaborative work in the ProDataMarket project.

Cerved & SpazioDati present the first prototype for proDataMarket @DataDrivenInnovation 2016
Cerved & SpazioDati present the first prototype for proDataMarket @DataDrivenInnovation 2016

 

Data Driven Innovation is an open summit about big data hosted by Roma Tre university and organized by Codemotion. During two days of the summit many people have had the possibility to see the first results of Cerved & SpazioDati proDataMarket project: the Cerved Scouting Terrain Service (CST), an interactive map showing Bologna territory scores and social demographic scores, as the social disease index, the economic disease index, the socio-demographic score and much more territory scores.

CST, 2d business case of Cerved: Employees of the working population in Bologna
CST, 2d business case of Cerved: Employees of the working population in Bologna

 

CST is the second business case Cerved is being developed within the proDataMarket project: the goal of this service is to provide target users with a tool to search and see property and territory information on a map. In order to achieve this, Cerved is developing value-added geo-marketing indicators, analyses and visualisations.

Authors: Claudio Castelli & Diego Sanvito