GraphDB Cloud: an on-demand enterprise ready RDF database

We, from Ontotext, are excited to announce GraphDB Cloud – the easy way to introduce you to a semantic database like our signature GraphDB product. The automated tasks in GraphDB Cloud save the organizations the time and effort to install and manage hardware and software as well as the cost to buy it. Compared to a do-it-yourself database, DBaaS offers developers the opportunity to cut down the time it took them to work with their databases and spend their valuable time on creating and innovating instead of administrating.

GraphDB Cloud is one part of the Cognitive Cloud solutions for low-cost and on-demand smart data management.

The users are with the following profile:

  • Small cognitive-technology oriented team in a big organization that needs low upfront and ongoing costs for a database.
  • Start-up companies without a database infrastructure, which requires a reliable technology that scales up along with their business.
  • Corporate solution architects working to solve the challenges their enterprise faces when handling huge amounts of data and information

As a next step, we want to invite you to watch our webinar “GraphDB Cloud – Enterprise Ready RDF Database on Demand” where we introduce you to the DraphDB Cloud console and advise you how you could create custom solutions to address your company’s specific data and information needs.

The proDataMarket Ontology: Enabling Semantic Interoperability of Real Property Data

Real property data (often referred to as real estate, realty, or immovable property data) represent a valuable asset that has the potential to enable innovative services when integrated with related contextual data (e.g., business data). Such services can range from providing evaluation of real estate to reporting on up-to-date information about state-owned properties. Real property data integration is a difficult task primarily due to the heterogeneity and complexity of the real property data, and the lack of generally agreed upon semantic descriptions of the concepts in this domain. The proDataMarket ontology is developed in the project as a key enabler for integration of real property data.

The proDataMarket ontology design and development process followed techniques and design choices supported by existing methodologies, mainly the one proposed by Noy [1]. Requirements are extracted from a set of relevant business cases and competency questions [2] are defined for each business case, so as core concepts and relationships. A conceptual model is then developed based on the requirements mentioned above and international standards including ISO 19152:2012 and European Union’s INSPIRE data specifications. For example, the LADM conceptual model from ISO 19152:2012 is used as reference model to the proDataMarket cadastral domain conceptual model. Afterwards we implemented the conceptual model using RDFS/OWL linked data standard. RDFS is used to model concepts, properties and simple relationships such as rdfs:subClassOf. OWL is built upon RDFS and provides a richer language for web ontology modelling and it is used to model constraints and other advanced relationships, such as the cardinality constraint needed to express the relationship between properties and buildings.

The proDataMarket ontology can be accessed at http://vocabs.datagraft.net/proDataMarket/. The ontology has been divided into several sub-ontologies (see Table below), reflecting the cross-domain nature of the requirements. This modular approach also helped to handle the complexity of the model and made it easier to maintain. In the current version, there are 11 sub-ontologies with 43 native classes and 43 native properties.

Table: Composition of the proDataMarket ontology

Domain/module Namespace prefix URL Classes Properties Business cases
Common prodm-com http://vocabs.datagraft.net/proDataMarket/0.1/Common# 4 4 ALL
Cadaster prodm-cad http://vocabs.datagraft.net/proDataMarket/0.1/Cadastre# 6 16 SoE, RVAS, NNAS, SIM
State of Estate Report prodm-soe http://vocabs.datagraft.net/proDataMarket/0.1/SoE# 4 2 SoE, RVAS
Business Entity Reuse the existing vocabularies, no new classes and properties 0 0 SoE, RVAS
Building Accessibility Reuse the existing vocabularies, no new classes and properties 0 0 SoE
Natural Hazard prodm-nh http://vocabs.datagraft.net/proDataMarket/0.1/NaturalHazard# 1 0 RVAS
Land Parcel Identification System (LPIS) prodm-lpis http://vocabs.datagraft.net/proDataMarket/0.1/LPIS# 1 7 CAPAS
Protected Sites prodm-ps http://vocabs.datagraft.net/proDataMarket/0.1/ProtectedSite# 2 0 CAPAS
Sentinel data prodm-sen http://vocabs.datagraft.net/proDataMarket/0.1/Sentinel# 1 1 CAPAS
Landscape Elements (LiDAR data) prodm-lid http://vocabs.datagraft.net/proDataMarket/0.1/Lidar# 3 0 CAPAS
Assessment prodm-asm http://vocabs.datagraft.net/proDataMarket/0.1/Assessment# 3 3 CAPAS
CensusTract prodm-ct http://vocabs.datagraft.net/proDataMarket/0.1/CensusTract# 1 0 CST,CCRS
Urban Infrastructure prodm-ui http://vocabs.datagraft.net/proDataMarket/0.1/UrbanInfrastructure# 17 10 SIM
Total: 43 43

More than 30 datasets have been published through the DataGraft platform [3] [4] using the proDataMarket ontology as a central reference model. All seven business cases use the proDataMarket ontology in data publishing. More details on the proDataMarket vocabulary can be found in the paper under review: http://www.semantic-web-journal.net/content/prodatamarket-ontology-enabling-semantic-interoperability-real-property-data

References

  • [1] Noy, Natalya F., and Deborah L. McGuinness. “Ontology development 101: A guide to creating your first ontology.” (2001).
  • [2] Grüninger, Michael, and Mark S. Fox. “Methodology for the Design and Evaluation of Ontologies.” (1995).
  • [3] Roman, D., et al. DataGraft: One-Stop-Shop for Open Data Management. 2017. Semantic Web, vol. Preprint, no. Preprint, pp. 1-19, 2017. DOI: 10.3233/SW-170263.
  • [4] Roman, D., et al. DataGraft: Simplifying Open Data Publishing. ESWC (Satellite Events) 2016: 101-106.

New DataGraft-related papers

DataGraft: One-Stop-Shop for Open Data Management by D. Roman, N. Nikolov, A. Putlier, D. Sukhobok, B. Elvesæter, A. Berre, X. Ye, M. Dimitrov, A. Simov, M. Zarev, R. Moynihan, B. Roberts, I. Berlocher, S. Kim, T. Lee, A. Smith, and T. Heath. Semantic Web journal, 2016.

  • Abstract: This paper introduces DataGraft (https://datagraft.net/) – a cloud-based platform for data transformation and publishing. DataGraft was developed to provide better and easier to use tools for data workers and developers (e.g., open data publishers, linked data developers, data scientists) who consider existing approaches to data transformation, hosting, and access too costly and technically complex. DataGraft offers an integrated, flexible, and reliable cloud-based solution for hosted open data management. Key features include flexible management of data transformations (e.g., interactive creation, execution, sharing, and reuse) and reliable data hosting services. This paper provides an overview of DataGraft focusing on the rationale, key features and components, and evaluation.
  • Download paper

DataGraft: Simplifying Open Data Publishing by D. Roman, M. Dimitrov, N. Nikolov, A. Putlier, D. Sukhobok, B. Elvesæter, A..J. Berre, X. Ye, A. Simov and Y. Petkov. ESWC Demo paper. 2016.

  • Abstract: In this demonstrator we introduce DataGraft – a platform for Open Data management. DataGraft provides data transformation, publishing and hosting capabilities that aim to simplify the data publishing lifecycle for data workers (i.e., Open Data publishers, Linked Data developers, data scientists). This demonstrator highlights the key features of DataGraft by exemplifying a data transformation and publishing use case with property-related data.
  • Download paper

Tabular Data Cleaning and Linked Data Generation with Grafterizer by D. Sukhobok, N. Nikolov, A. Pultier, X. Ye, A..J. Berre, R. Moynihan, B. Roberts, B. Elvesæter, N. Mahasivam and D. Roman. ESWC Demo paper. 2016.

  • Abstract: Over the past several years the amount of published open data has increased significantly. The majority of this is tabular data, that requires powerful and flexible approaches for data cleaning and preparation in order to convert it into Linked Data. This paper introduces Grafterizer – a software framework developed to support data workers and data developers in the process of converting raw tabular data into linked data. Its main components include Grafter, a powerful software library and DSL for data cleaning and RDF-ization, and Grafterizer, a user interface for interactive specification of data transformations along with a back-end for management and execution of data transformations. The proposed demonstration will focus on Grafterizer’s powerful features for data cleaning and RDF-ization in a scenario using data about the risk of failure of transport infrastructure components due to natural hazards.
  • Download paper